![]() | • レポートコード:BONA5JA-0070 • 出版社/出版日:Bonafide Research / 2024年2月 • レポート形態:英文、PDF、159ページ • 納品方法:Eメール • 産業分類:IT&通信 |
Single User(1名様閲覧用、印刷不可) | ¥732,600 (USD4,950) | ▷ お問い合わせ |
Corporate License(閲覧人数無制限、印刷可) | ¥1,102,600 (USD7,450) | ▷ お問い合わせ |
• お支払方法:銀行振込(納品後、ご請求書送付)
レポート概要
目次 1. 要旨 2. 市場ダイナミクス 2.1. 市場促進要因と機会 2.2. 市場の阻害要因と課題 2.3. 市場動向 2.4. コビッド19効果 2.5. サプライチェーン分析 2.6. 政策と規制の枠組み 2.7 …
“世界の自律走行車市場(~2029年):自動車種類別(乗用車、商用車)、市場規模” の続きを読む
レポート目次目次
1. 要旨
2. 市場ダイナミクス
2.1. 市場促進要因と機会
2.2. 市場の阻害要因と課題
2.3. 市場動向
2.4. コビッド19効果
2.5. サプライチェーン分析
2.6. 政策と規制の枠組み
2.7. 業界専門家の見解
3. 調査方法
3.1. 二次調査
3.2. 一次データ収集
3.3. 市場形成と検証
3.4. 報告書作成、品質チェック、納品
4. 市場構造
4.1. 市場への配慮
4.2. 前提条件
4.3. 制限事項
4.4. 略語
4.5. 情報源
4.6. 定義
5. 経済・人口統計
6. 自律走行車の世界市場展望
6.1. 市場規模(金額ベース
6.2. 地域別市場シェア
6.3. 市場規模および予測、地域別
6.4. 市場規模・予測:自動車の種類別
6.5. 市場規模・予測:種類別
6.6. 市場規模・予測:用途別
6.7. 市場規模・予測:自動化レベル別
6.8. 市場規模・予測:コンポーネント別
7. 北米自律走行車市場の展望
7.1. 市場規模:金額別
7.2. 国別市場シェア
7.3. 市場規模および予測、自動車の種類別
7.4. 市場規模・予測:種類別
7.5. 市場規模・予測:用途別
7.6. 市場規模・予測:自動化レベル別
7.7. 市場規模・予測:コンポーネント別
7.8. 米国の自律走行車市場展望
7.8.1. 金額別市場規模
7.8.2. 市場規模・予測:車両種類別
7.8.3. 種類別市場規模・予測
7.8.4. 用途別市場規模・予測
7.9. カナダの自律走行車市場展望
7.9.1. 金額別市場規模
7.9.2. 市場規模・予測:車両種類別
7.9.3. 種類別市場規模・予測
7.9.4. 用途別市場規模・予測
7.10. メキシコの自律走行車市場展望
7.10.1. 市場規模:金額別
7.10.2. 市場規模・予測:車両種類別
7.10.3. 種類別の市場規模・予測
7.10.4. 用途別市場規模・予測
8. 欧州自律走行車市場の展望
8.1. 金額別市場規模
8.2. 国別市場シェア
8.3. 市場規模および予測、自動車の種類別
8.4. 市場規模・予測:種類別
8.5. 市場規模・予測:用途別
8.6. 市場規模・予測:自動化レベル別
8.7. 市場規模・予測:コンポーネント別
8.8. ドイツの自律走行車市場の展望
8.8.1. 市場規模:金額別
8.8.2. 市場規模・予測:車両種類別
8.8.3. 種類別市場規模・予測
8.8.4. 用途別市場規模・予測
8.9. イギリスの自律走行車市場展望
8.9.1. 金額別市場規模
8.9.2. 市場規模・予測:車両種類別
8.9.3. 種類別市場規模・予測
8.9.4. 用途別市場規模・予測
8.10. フランス自律走行車市場の展望
8.10.1. 市場規模:金額別
8.10.2. 市場規模・予測:車両種類別
8.10.3. 種類別市場規模・予測
8.10.4. 用途別市場規模・予測
8.11. イタリアの自律走行車市場の展望
8.11.1. 市場規模:金額別
8.11.2. 市場規模・予測:車両種類別
8.11.3. 種類別市場規模・予測
8.11.4. 用途別市場規模・予測
8.12. スペインの自律走行車市場の展望
8.12.1. 市場規模:金額別
8.12.2. 市場規模・予測:車両種類別
8.12.3. 種類別市場規模・予測
8.12.4. 用途別市場規模・予測
8.13. ロシアの自律走行車市場の展望
8.13.1. 金額別市場規模
8.13.2. 市場規模・予測:車両種類別
8.13.3. 種類別市場規模・予測
8.13.4. 用途別市場規模・予測
9. アジア太平洋地域の自律走行車市場の展望
9.1. 金額別市場規模
9.2. 国別市場シェア
9.3. 市場規模および予測、自動車の種類別
9.4. 市場規模・予測:種類別
9.5. 市場規模・予測:用途別
9.6. 市場規模・予測:自動化レベル別
9.7. 市場規模・予測:コンポーネント別
9.8. 中国自律走行車市場の展望
9.8.1. 市場規模:金額別
9.8.2. 市場規模・予測:車両種類別
9.8.3. 種類別市場規模・予測
9.8.4. 用途別市場規模・予測
9.9. 日本の自律走行車市場の展望
9.9.1. 金額別市場規模
9.9.2. 市場規模・予測:車両種類別
9.9.3. 種類別市場規模・予測
9.9.4. 用途別市場規模・予測
9.10. インドの自律走行車市場の展望
9.10.1. 金額別市場規模
9.10.2. 市場規模・予測:自動車の種類別
9.10.3. 種類別の市場規模・予測
9.10.4. 用途別市場規模・予測
9.11. オーストラリア自律走行車市場の展望
9.11.1. 金額別市場規模
9.11.2. 市場規模・予測:車両種類別
9.11.3. 種類別市場規模・予測
9.11.4. 用途別市場規模・予測
9.12. 韓国の自律走行車市場展望
9.12.1. 金額別市場規模
9.12.2. 市場規模・予測:車両種類別
9.12.3. 種類別市場規模・予測
9.12.4. 用途別市場規模・予測
10. 南米・中東・アフリカの自律走行車市場展望
10.1. 市場規模:金額別
10.2. 国別市場シェア
10.3. 市場規模および予測、自動車の種類別
10.4. 市場規模・予測:種類別
10.5. 市場規模・予測:用途別
10.6. 市場規模・予測:自動化レベル別
10.7. 市場規模・予測:コンポーネント別
10.8. ブラジル自律走行車市場の展望
10.8.1. 市場規模:金額別
10.8.2. 市場規模・予測:自動車の種類別
10.8.3. 種類別市場規模・予測
10.8.4. 用途別市場規模・予測
10.9. UAEの自律走行車市場展望
10.9.1. 金額別市場規模
10.9.2. 市場規模・予測:車両種類別
10.9.3. 種類別市場規模・予測
10.9.4. 用途別市場規模・予測
10.10. サウジアラビアの自律走行車市場展望
10.10.1. 金額別市場規模
10.10.2. 市場規模・予測:車両種類別
10.10.3. 種類別の市場規模・予測
10.10.4. 用途別市場規模・予測
11. 競争環境
11.1. 競合ダッシュボード
11.2. 主要企業の事業戦略
11.3. 主要プレーヤーの市場シェアの洞察と分析、2022年
11.4. 主要プレーヤーの市場ポジショニングマトリックス
11.5. ポーターの5つの力
11.6. 会社概要
11.6.1. メルセデス・ベンツ・グループAG
11.6.1.1. 会社概要
11.6.1.2. 会社概要
11.6.1.3. 財務ハイライト
11.6.1.4. 地理的洞察
11.6.1.5. 事業セグメントと業績
11.6.1.6. 製品ポートフォリオ
11.6.1.7. 主要役員
11.6.1.8. 戦略的な動きと展開
11.6.2. Uber Technologies, Inc
11.6.3. Bayerische Motoren Werke AG
11.6.4. Toyota Motor Corporation
11.6.5. General Motors Company
11.6.6. Volkswagen AG
11.6.7. Alphabet Inc.
11.6.8. Volvo Cars
11.6.9. Nissan Motor Co., Ltd.
11.6.10. Ford Motor Company
11.6.11. Nvidia Corporation
11.6.12. Pony.ai
11.6.13. Tesla, Inc
11.6.14. Baidu, Inc.
11.6.15. Tata Elxsi Ltd.
11.6.16. Nuro, Inc.
11.6.17. Groupe Renault
11.6.18. Luminar Technologies Inc
11.6.19. Aptiv PLC
11.6.20. Denso Corporation
12. 戦略的提言
13. 付属資料
13.1. よくある質問
13.2. 注意事項
13.3. 関連レポート
14. 免責事項
図表一覧
図1:自律走行車の世界市場規模(億米ドル)、地域別、2023年・2029年
図2:市場魅力度指数(2029年地域別
図3:市場魅力度指数(セグメント別) 2029年
図4:自律走行車の世界市場規模(金額ベース)(2018年・2023年・2029F)(単位:億米ドル
図5:自律走行車の世界市場地域別シェア(2023年)
図6:北米の自律走行車市場規模:金額ベース(2018年・2023年・2029F)(単位:億米ドル)
図7:北米の自律走行車市場 国別シェア(2023年)
図8:アメリカの自律走行車市場規模:金額ベース(2018年・2023年・2029F)(単位:億米ドル)
図9:カナダの自律走行車市場規模:金額ベース(2018年・2023年・2029F)(単位:億米ドル)
図10:メキシコの自律走行車市場規模:金額(2018年・2023年・2029F)(単位:億米ドル)
図11:欧州の自律走行車市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図12:欧州自律走行車市場の国別シェア(2023年)
図13:ドイツの自律走行車市場規模:金額(2018年・2023年・2029F)(単位:億米ドル)
図14:イギリスの自律走行車市場規模:金額ベース(2018年・2023年・2029F)(単位:億米ドル)
図15:フランス 自律走行車市場規模:金額ベース(2018年・2023年・2029F) (単位:億米ドル)
図16:イタリアの自律走行車市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図17:スペインの自律走行車市場規模:金額(2018年・2023年・2029F)(単位:億米ドル)
図18:ロシアの自律走行車市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図19:アジア太平洋地域の自律走行車市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図20:アジア太平洋地域の自律走行車市場 国別シェア(2023年)
図21:中国 自律走行車市場規模:金額ベース(2018年・2023年・2029F)(単位:億米ドル)
図22:日本の自律走行車市場規模:金額ベース(2018年、2023年、2029F)(単位:億米ドル)
図23:インドの自律走行車市場規模:金額ベース(2018年・2023年・2029F)(単位:億米ドル)
図24:オーストラリアの自律走行車市場規模:金額ベース(2018年・2023年・2029F)(単位:億米ドル)
図25: 韓国の自律走行車市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図26: 南米の自律走行車市場規模:金額ベース(2018年、2023年、2029F)(単位:億米ドル)
図27:南米の自律走行車市場 南米の自律走行車市場:国別シェア(2023年)
図28:ブラジル ブラジルの自律走行車市場規模:金額(2018年、2023年、2029F)(単位:億米ドル)
図29:UAEの自律走行車市場 UAEの自律走行車市場規模:金額(2018年、2023年、2029F)(単位:億米ドル)
図30:サウジアラビア サウジアラビアの自律走行車市場規模:金額(2018年・2023年・2029F)(単位:億米ドル)
図31:サウジアラビアの自律走行車市場 上位5社の競合ダッシュボード(2023年
図32: 主要企業の市場シェア(2023年
図33: 自律走行車の世界市場におけるポーターの5つの力
表一覧
表1:自律走行車の世界市場スナップショット(セグメント別)(2023年・2029年)(単位:億米ドル
表2:自律走行車市場の影響要因(2023年
表3:上位10カ国の経済スナップショット(2022年
表4:その他の主要国の経済スナップショット(2022年
表5:外国通貨から米ドルへの平均為替レート
表6:自律走行車の世界市場規模・予測(2018年~2029F)(地域別)(単位:億米ドル
表7:自律走行車の世界市場規模・予測:自動車の種類別(2018年~2029F)(単位:億米ドル)
表8:自律走行車の世界市場規模・予測:種類別(2018年~2029F)(単位:億米ドル)
表9:自律走行車の世界市場規模・予測:用途別(2018年~2029F) (単位:億米ドル)
表10:自律走行車の世界市場規模・予測:自動化レベル別(2018年~2029F) (単位:億米ドル)
表11:自律走行車の世界市場規模・予測:コンポーネント別(2018年~2029F)(単位:億米ドル)
表12:北米の自律走行車市場規模・予測:自動車の種類別(2018年~2029F)(単位:億米ドル)
表13:北米の自律走行車市場規模・予測:種類別(2018年~2029F)(単位:億米ドル)
表14:北米の自律走行車市場規模・予測:用途別(2018~2029F)(単位:億米ドル)
表15:北米の自律走行車市場規模・予測:自動化レベル別(2018年~2029F)(単位:億米ドル)
表16:北米の自律走行車市場規模・予測:コンポーネント別(2018年~2029F)(単位:億米ドル)
表17:米国の自律走行車市場規模・予測:車両種類別(2018年~2029F)(単位:億米ドル)
表18:米国の自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表19:米国の自律走行車市場規模・用途別予測(2018年~2029F) (単位:億米ドル)
表20:カナダの自律走行車市場規模・予測:車両種類別(2018年~2029F) (単位:億米ドル)
表21:カナダの自律走行車市場規模・種類別予測(2018年~2029F) (単位:億米ドル)
表22:カナダの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表23:メキシコの自律走行車市場規模・予測:車種別(2018~2029F) (単位:億米ドル)
表24:メキシコの自律走行車市場規模・予測:種類別(2018~2029F) (単位:億米ドル)
表25:メキシコの自律走行車市場 メキシコの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表26: 欧州の自律走行車市場規模・予測:自動車の種類別(2018~2029F) (単位:億米ドル)
表27:欧州の自律走行車市場 欧州の自律走行車市場規模・予測:種類別(2018~2029F) (単位:億米ドル)
表28: 欧州の自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表29:欧州の自律走行車市場規模・予測 欧州の自律走行車市場規模・予測:自動化レベル別(2018~2029F) (単位:億米ドル)
表30:欧州の自律走行車市場規模・予測 欧州の自律走行車市場規模・予測:コンポーネント別(2018~2029F)(単位:億米ドル)
表31:ドイツ ドイツの自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表32:ドイツの自律走行車市場 ドイツの自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表33:ドイツの自律走行車市場 ドイツの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表34: イギリスの自律走行車市場規模・予測:車種別(2018年~2029F) (単位:億米ドル)
表35: イギリスの自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表36:イギリスの自律走行車市場 イギリスの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表37:フランス フランス 自律走行車市場規模・予測:種類別(2018~2029F) (単位:億米ドル)
表38: フランスの自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表39:フランス フランスの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表40: イタリアの自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表41:イタリアの自律走行車市場 イタリアの自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表42:イタリアの自律走行車市場 イタリアの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表43:スペイン スペインの自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表44:スペインの自律走行車市場 スペインの自律走行車市場規模・予測:種類別(2018〜2029F) (単位:億米ドル)
表45:スペインの自律走行車市場 スペインの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表46:ロシア ロシアの自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表47:ロシア ロシアの自律走行車市場規模・種類別予測 (2018年~2029F) (単位:億米ドル)
表48:ロシア ロシアの自律走行車市場規模・用途別予測 (2018年~2029F) (単位:億米ドル)
表49:アジア太平洋地域の自律走行車市場 アジア太平洋地域の自律走行車市場規模・予測:自動車の種類別(2018年~2029F) (単位:億米ドル)
表50:アジア太平洋地域の自律走行車市場規模・予測:種類別(2018年~2029F)(単位:億米ドル)
表51:アジア太平洋地域の自律走行車市場 アジア太平洋地域の自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表52:アジア太平洋地域の自律走行車市場 アジア太平洋地域の自律走行車市場規模・予測:自動化レベル別(2018~2029F)(単位:億米ドル)
表53:アジア太平洋地域の自律走行車市場 アジア太平洋地域の自律走行車市場規模・予測:コンポーネント別(2018~2029F)(単位:億米ドル)
表54:中国 中国の自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表55:中国の自律走行車市場 中国の自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表56:中国の自律走行車市場規模・予測 中国の自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表57:日本 日本の自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表58:日本の自律走行車の市場規模・予測 日本の自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表59:日本の自律走行車市場 日本の自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表60:インドの自律走行車市場規模・予測:車両種類別(2018年~2029F) (単位:億米ドル)
表61:インドの自律走行車市場 インドの自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表62:インドの自律走行車市場 インドの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表63:オーストラリア オーストラリア 自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表64:オーストラリアの自律走行車市場 オーストラリアの自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表65:オーストラリアの自律走行車市場 オーストラリアの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表 66: 韓国の自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表67: 韓国の自律走行車市場規模・予測:種類別(2018~2029F) (単位:億米ドル)
表68: 韓国の自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表69: 南米・中東・アフリカの自律走行車市場規模・予測:車両種類別(2018年~2029F) (単位:億米ドル)
表70:南米・中東・アフリカの自律走行車市場規模・予測:種類別(2018~2029F)(単位:億米ドル)
表71: 南米・中東・アフリカの自律走行車市場規模・予測:用途別(2018~2029F)(単位:億米ドル)
表72: 南米・中東・アフリカの自律走行車市場規模・予測:自動化レベル別(2018~2029F)(単位:億米ドル)
表73: 南米・中東・アフリカの自律走行車市場規模・予測:コンポーネント別(2018~2029F)(単位:億米ドル)
表74:ブラジル ブラジルの自律走行車市場規模・予測:車両種類別(2018~2029F) (単位:億米ドル)
表75:ブラジルの自律走行車市場 ブラジルの自律走行車市場規模・予測:種類別(2018~2029F) (単位:億米ドル)
表76:ブラジルの自律走行車市場 ブラジルの自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表77:アラブ首長国連邦 アラブ首長国連邦の自律走行車市場規模・予測:種類別(2018~2029F) (単位:億米ドル)
表78:アラブ首長国連邦の自律走行車市場 アラブ首長国連邦の自律走行車市場規模・種類別予測(2018~2029F) (単位:億米ドル)
表79:アラブ首長国連邦の自律走行車市場 アラブ首長国連邦の自律走行車市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表80:サウジアラビアの自律走行車市場規模・予測:種類別(2018年~2029F) (単位:億米ドル)
表81:サウジアラビアの自律走行車市場 サウジアラビアの自律走行車市場規模・種類別予測(2018~2029F) (単位:億米ドル)
表82:サウジアラビアの自律走行車市場規模・予測:用途別(2018~2029F)(単位:億米ドル)
According to the research report, “Global Autonomous Vehicle Market Outlook, 2029” published by Bonafide Research, the market is anticipated to cross USD 140 Billion by 2029, increasing from USD 37.16 Billion in 2023. The market is expected to grow with 22.03% CAGR by 2024-29. The rise of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication has enabled autonomous vehicles to share critical information with each other and with the surrounding environment. This connectivity improves coordination and enhances overall traffic management. Major players in the automotive industry, as well as technology and transportation companies, are making substantial investments in autonomous vehicle research and development. This influx of capital fuels innovation and accelerates the deployment of autonomous technologies. The emergence of numerous startups focusing exclusively on autonomous technologies has injected fresh ideas and perspectives into the industry. These startups often bring agility and innovation, contributing to the overall growth. Autonomous vehicles have the potential to significantly reduce accidents caused by human error, which is a leading cause of road accidents. Improved safety features and the ability of AI to handle complex scenarios contribute to the appeal of autonomous technology. The autonomous vehicle industry opens up new business opportunities, including mobility-as-a-service (MaaS) models, where users can access transportation on-demand without owning a vehicle. This shift could reshape the automotive industry and lead to the creation of new economic ecosystems. The development, manufacturing, and maintenance of autonomous vehicles generate employment opportunities in various sectors, including engineering, software development, and logistics. Autonomous vehicles are expected to play a crucial role in the development of smart cities. They can contribute to reduce congestion, and more efficient urban planning. The ability to program autonomous vehicles for optimal fuel efficiency and reduced emissions aligns with global efforts toward environmental sustainability. As consumers become more familiar with autonomous technologies through semi-autonomous features in modern vehicles, there is a growing awareness and acceptance of the benefits of full autonomy.
The increase in delivery needs caused by the expansion of e-commerce mandates faster and more efficient logistics solutions. Autonomous vehicles, which include drones and self-driving delivery trucks, have the potential to improve last-mile delivery operations, addressing the growing demand for fast and dependable supplies. These vehicles promise improved routes, lower operational costs, and faster delivery times, which aligns with the goals of e-commerce enterprises seeking to meet customer demand for speedier shipment. As e-commerce grows in popularity, so does the demand for new logistics solutions, driving investment and research into autonomous technology and, ultimately, boosting the growth and deployment of autonomous vehicles inside the e-commerce supply chain. Industries that use self-driving vehicles indicate a readiness to accept new technology. As these industries reap the benefits of better efficiency, lower costs, and improved safety brought about by autonomous transportation, it encourages more adoption and investment in autonomous vehicle technology across a wide range of sectors. For example, in September 2023, Volvo Autonomous Solutions (V.A.S.), a Sweden-based firm that provides autonomous transport solutions, and Boliden, a Swedish mining corporation, will form a long-term cooperation to implement self-driving transport solutions in Boliden's operations. They'll collaborate on a variety of projects, beginning with deploying autonomous transportation at Boliden's Garpenberg location in Sweden.
Market Drivers
• Consumer Demand for Mobility Services: The rise in consumer demand for convenient and efficient mobility services is a significant driver for the autonomous vehicle market. The advent of ride-hailing and ride-sharing platforms has created a paradigm shift in how people view transportation. Autonomous vehicles are seen as a key enabler for these services, offering the potential for cost-effective, on-demand transportation without the need for human drivers. The convenience, flexibility, and potentially lower costs associated with autonomous mobility services contribute to the growing interest and adoption of autonomous vehicles, driving innovation and investments in the sector.
• Environmental Considerations: Autonomous vehicles are anticipated to play a role in addressing environmental concerns by optimizing traffic flow and improving fuel efficiency. Through advanced algorithms and connectivity, autonomous vehicles can potentially reduce congestion, enhance traffic management, and optimize routes, resulting in lower fuel consumption and reduced emissions. As the global community intensifies efforts to combat climate change, the environmental benefits associated with autonomous transportation make it a driver for the adoption of this technology.
Market Challenges
• Ethical and Legal Considerations: The ethical considerations surrounding autonomous vehicles pose a complex challenge for the industry. Autonomous vehicles need to make split-second decisions in situations where human lives are at stake, leading to discussions about the ethical programming of these decisions. Determining how vehicles should prioritize the safety of occupants, pedestrians, and other road users is a critical aspect of ethical consideration. Additionally, the legal landscape surrounding autonomous vehicles is evolving, and questions of liability in the event of accidents or malfunctions need resolution to provide a clear framework for industry stakeholders and consumers.
• Infrastructure Readiness: The successful deployment of autonomous vehicles relies heavily on supportive infrastructure. Smart roads, robust communication networks, and advanced traffic management systems are essential components to ensure the seamless operation of autonomous vehicles. The lack of standardized infrastructure globally poses a challenge to the widespread implementation of autonomous technology. Collaborative efforts between governments, technology companies, and infrastructure providers are necessary to develop and deploy the infrastructure needed to support the safe and efficient functioning of autonomous vehicles.
Market Trends
• Development of Level 4 and 5 Autonomy: Level 4 and Level 5 autonomy represent stages where vehicles can operate with minimal or no human intervention in specific scenarios or under all conditions, respectively. Achieving these levels of autonomy requires advancements in perception systems, decision-making algorithms, and comprehensive mapping. Industry players are investing heavily in research and development to push the boundaries of autonomy, with the aim of providing users with a truly driverless experience, unlocking new possibilities for mobility and transportation services.
• Focus on User Experience (UX) : As autonomous vehicles move closer to commercial deployment, there is an increasing focus on delivering a positive and comfortable user experience. Designing intuitive user interfaces, addressing concerns related to motion sickness, and creating appealing in-car environments for passengers are key considerations. The interior design of autonomous vehicles is evolving to accommodate diverse use cases, including work, leisure, and relaxation. User-centric design and an emphasis on passenger comfort are becoming crucial elements in differentiating autonomous vehicles in the market and ensuring consumer acceptance.
Covid-19 Impacts
The automotive industry, including autonomous vehicle manufacturers, experienced production slowdowns and shutdowns due to workforce limitations, restrictions on movement, and a general economic downturn. Additionally, the pandemic led to a reduction in testing and validation activities, as social distancing measures and lockdowns hindered on-road testing and collaborative efforts. On the positive side, the pandemic underscored the potential benefits of autonomous vehicles in scenarios like contactless deliveries and transportation of essential goods. The emphasis on reducing human-to-human contact accelerated interest in autonomous delivery solutions. Companies exploring last-mile autonomous delivery services found an increased demand for their technology during periods of lockdowns and social distancing measures. Moreover, the pandemic prompted a reevaluation of transportation needs and priorities. With the rise of remote work, there has been increased interest in the development of autonomous shuttles and microtransit solutions to address changing commuting patterns. The concept of shared autonomous mobility gained traction as people reconsidered the necessity of personal vehicle ownership in urban areas. However, the economic uncertainties stemming from the pandemic also led to a reevaluation of investment priorities, and some companies in the autonomous vehicle space faced financial challenges. The pandemic-induced economic slowdown prompted a cautious approach to discretionary spending and investments, impacting the pace of development and deployment of autonomous technologies.
Passenger cars are leading in the Autonomous Vehicle Market because of the widespread consumer adoption driven by the demand for enhanced safety, convenience, and the evolution of advanced driver-assistance systems (ADAS) .
The dominance of passenger cars in the Autonomous Vehicle Market can be primarily attributed to the pervasive consumer demand for improved safety and convenience. The increasing integration of advanced driver-assistance systems (ADAS) in passenger vehicles has played a pivotal role in laying the foundation for autonomous driving technology. Consumers are increasingly valuing features such as adaptive cruise control, lane-keeping assistance, automatic emergency braking, and parking assistance, which are stepping stones toward full autonomy. This growing acceptance of ADAS has not only fueled the development of autonomous technologies but has also fostered consumer trust and familiarity with automated driving functionalities. Passenger cars are at the forefront of this technological evolution as automakers prioritize implementing autonomous features in vehicles designed for individual consumers. The deployment of autonomous technology in passenger cars aligns with the broader societal trend towards smarter, connected lifestyles. The convenience offered by autonomous driving, allowing passengers to reclaim time during their commutes, has significantly contributed to the appeal of self-driving cars. Additionally, the iterative approach of introducing autonomous features incrementally in passenger vehicles has allowed consumers to gradually adapt to and trust the evolving technology. Furthermore, the economic and practical considerations have driven the focus on passenger cars. Fleets of autonomous taxis and delivery vehicles are certainly part of the autonomous future, but the initial market traction is established by private ownership of autonomous passenger cars. This approach leverages the existing infrastructure and accommodates the personal preferences and lifestyles of consumers, making it a more viable and accessible option in the current market landscape.
Semi-autonomous cars are leading in the Autonomous Vehicle Market because they strike a balance between technological advancement and user acceptance by providing enhanced driver assistance features while maintaining a level of human control and involvement.
The ascendancy of semi-autonomous cars in the Autonomous Vehicle Market is rooted in the strategic compromise they offer between cutting-edge technology and user acceptance. Semi-autonomous vehicles incorporate advanced driver assistance systems (ADAS) that provide a spectrum of features, including adaptive cruise control, lane-keeping assistance, and automated parking. These capabilities enhance safety, convenience, and overall driving experience, enticing consumers to embrace autonomous technologies gradually. The gradual integration of autonomous features allows users to experience the benefits of automation while still having a level of control, addressing concerns related to trust and reliability. Semi-autonomous vehicles represent a phased approach towards full autonomy, acknowledging the importance of human involvement and oversight during the transitional period. This approach aligns with regulatory frameworks and societal expectations that prioritize safety and gradual adaptation to new technologies. By empowering drivers with a combination of automated assistance and manual control, semi-autonomous cars overcome challenges related to legal and ethical considerations surrounding fully autonomous vehicles. Moreover, the market success of semi-autonomous cars can be attributed to their compatibility with existing infrastructure and the incremental nature of their technological implementation. Integrating autonomous features into existing models of passenger cars enables manufacturers to tap into established markets and leverage economies of scale, making the technology more accessible and affordable for a broader consumer base. This approach facilitates a smoother transition to a future where fully autonomous vehicles may become more prevalent.
Transportation applications are leading in the Autonomous Vehicle Market due to the compelling economic and operational advantages they offer, such as increased efficiency, reduced operational costs, and improved safety in logistics and freight transportation.
The core rationale behind this leadership is the substantial economic and operational benefits that autonomous vehicles bring to transportation and supply chain management. Autonomously driven trucks and freight vehicles offer the promise of increased efficiency and reliability in the movement of goods. With the ability to operate continuously without the need for rest breaks or adherence to strict driving hour limitations, autonomous vehicles can significantly reduce transit times and expedite the delivery of goods. One of the primary drivers is the potential for substantial cost savings. Autonomous vehicles eliminate the need for human drivers, reducing labor costs and addressing challenges related to driver shortages in the industry. Moreover, the efficiency gains through optimized routing, reduced fuel consumption, and streamlined supply chain operations contribute to overall cost-effectiveness. The reliability of autonomous vehicles in adhering to traffic rules and avoiding accidents also leads to reduced insurance costs, further enhancing the financial appeal for transportation companies. Safety is another critical factor. Autonomous vehicles, equipped with advanced sensors and artificial intelligence, can navigate complex traffic scenarios, interpret road conditions, and respond to potential hazards with precision. This enhanced safety profile translates into fewer accidents, reduced damage to goods, and lower liability for transportation companies. Additionally, the scalability of autonomous technology in transportation applications is noteworthy. Fleet operators can incrementally adopt autonomous features, such as platooning or convoy systems, without an immediate shift to fully autonomous vehicles. This staged implementation allows transportation companies to test and validate the technology while maintaining operational flexibility. The global nature of supply chains and the demand for just-in-time deliveries further amplify the significance of autonomous transportation applications. As the technology matures, logistics companies are increasingly investing in autonomous fleets to gain a competitive edge in a rapidly evolving industry.
Level 2 autonomous transportation is leading in the Autonomous Vehicle Market because it strikes a balance between advanced driver assistance systems (ADAS) and user engagement, providing consumers with enhanced safety features while allowing them to maintain a level of control and comfort.
Level 2 autonomous transportation holds a prominent position in the Autonomous Vehicle Market due to its strategic approach in blending advanced automation with user involvement. At Level 2 autonomy, vehicles are equipped with sophisticated driver assistance systems such as adaptive cruise control, lane-keeping assistance, and automated parking, creating a comprehensive package of safety and convenience features. This level of automation enables the vehicle to handle certain driving tasks, but it still requires the driver to remain engaged and ready to take control when needed. Consumers have shown a greater willingness to adopt Level 2 autonomous vehicles compared to higher autonomy levels because of the gradual and familiar nature of the transition. The technology enhances the driving experience by reducing the driver's workload, particularly in monotonous or congested traffic conditions, while still allowing them to enjoy the act of driving when desired. This balance between automation and user engagement is a crucial factor in the widespread acceptance of Level 2 autonomous transportation. The incremental implementation of autonomy at Level 2 aligns with regulatory frameworks and societal expectations, addressing concerns related to safety, legal responsibilities, and the transition period to fully autonomous driving. The industry recognizes the importance of building trust among users, and Level 2 serves as a stepping stone toward achieving this by providing tangible benefits without completely removing the driver from the equation. Furthermore, automakers and technology developers find Level 2 autonomy to be a practical and commercially viable approach. By enhancing existing vehicles with Level 2 features, manufacturers can cater to a broader market and facilitate the integration of autonomous technology into conventional car models. This approach leverages existing infrastructure, reduces development costs, and accelerates the overall adoption of autonomous transportation.
The Software and Services component is leading in the Autonomous Vehicle Market because it represents the core intellectual property and innovation driving autonomous technology, providing the crucial algorithms, mapping, simulation, and over-the-air updates essential for the functionality, safety, and continuous improvement of autonomous vehicles.
The ascendancy of the Software and Services component in the Autonomous Vehicle Market is rooted in its role as the intellectual powerhouse of autonomous technology. This component encompasses the intricate algorithms, machine learning models, and software architecture that enable autonomous vehicles to perceive their surroundings, make decisions, and navigate dynamically in real-time. The software is the brain behind the operation, orchestrating complex tasks such as object recognition, path planning, and sensor fusion. Moreover, software plays a pivotal role in creating high-definition maps, an indispensable element for autonomous navigation. These detailed maps, often incorporating real-time data, provide vehicles with essential information about the road network, traffic conditions, and potential obstacles. As autonomous vehicles heavily rely on accurate and up-to-date mapping, the Software and Services component becomes a linchpin in ensuring safe and efficient navigation. Additionally, the continuous improvement and adaptation of autonomous systems are facilitated by over-the-air software updates, a key aspect of the Services component. This allows manufacturers to deploy improvements, address vulnerabilities, and enhance the performance of autonomous vehicles remotely. The ability to update software throughout the vehicle's lifecycle ensures that it remains aligned with the latest technological advancements and regulatory requirements, underscoring the significance of the Services component in the autonomous ecosystem. The Software and Services component not only enables the functionality of autonomous vehicles but also plays a crucial role in simulation and testing. Advanced simulation environments allow developers to assess the performance of autonomous algorithms in a virtual space, replicating a wide range of scenarios without the need for extensive real-world testing. This accelerates the development process, enhances safety, and ensures the robustness of autonomous systems. Furthermore, the Software and Services component fosters collaboration and innovation in the autonomous vehicle ecosystem. As various companies contribute unique algorithms, data processing techniques, and software solutions, an ecosystem of innovation is created, driving the rapid evolution of autonomous technology.
North America is leading in the Autonomous Vehicle Market due to its early and robust investment in autonomous technology research and development, supportive regulatory frameworks, and the presence of key industry players fostering innovation and collaboration.
The region has been at the forefront of research and development in the autonomous vehicle space, with numerous technology companies, automotive manufacturers, and research institutions headquartered or operating within North America. This early and sustained commitment to innovation has positioned the region as a global leader in shaping the future of autonomous transportation. Supportive regulatory frameworks have played a pivotal role in fostering the growth of autonomous vehicles in North America. While ensuring safety and addressing ethical concerns, regulatory bodies in the United States and Canada have been comparatively agile in adapting to and accommodating the evolving landscape of autonomous technology. This adaptability has provided a conducive environment for testing, development, and deployment of autonomous vehicles, enabling companies to explore and implement cutting-edge solutions. The presence of key industry players, including technology giants, traditional automakers, and startups, has created a vibrant ecosystem for collaboration and competition. North America hosts major players at the forefront of autonomous technology, contributing to a robust and competitive market. This concentration of expertise and resources has attracted global talent and investments, further solidifying North America's position as a hub for autonomous vehicle development. Geographical factors also contribute to North America's leadership in the Autonomous Vehicle Market. The extensive road infrastructure, diverse driving conditions, and varied regulatory landscapes across different states and provinces provide an ideal testing ground for autonomous vehicles. Companies can conduct comprehensive testing in real-world scenarios, covering urban, suburban, and rural environments, which is crucial for refining and validating autonomous systems.
The global autonomous vehicle market is highly competitive and dominated by the presence of major automotive giants. Leading market players are significantly focused towards inorganic growth strategies such as collaboration, partnership, merger & acquisition, and regional expansion. In August 2017, Intel Corporation, BMW AG, Fiat Chrysler Automobiles (FCA), and Mobileye, affiliated business of Intel Corporation contracted a memo of understanding for Fiat Chrysler Automobiles to link companies for the development of autonomous vehicle driving platform. The memorandum aimed at collaborating capabilities, resources, and strengths of all the companies to reduce the product launch time, in addition, also enhances the development efficiency and platform technology. Moreover, industry participants also invest significantly for the product development as autonomous vehicles require high-end electronic devices for advanced automotive features. Rapidly changing consumer preference and increasing awareness among the people for environment-friendly vehicles motivate the market players to incorporate such features in their vehicles. These market players tie up with the electronic hardware manufacturing companies to meet the consumer demand.
• On May 2023, Toyota and NVIDIA provided $43 million in Series C funding to Foretellix to support the creation of testing software for autonomous vehicles. With contributions from 83North Ventures, Woven Capital, Nvidia, Artofin VC, MoreTech Ventures, Nationwide, and Jump Capital, the financing round brought capital to over $93 million.
• On May 2023, Ouster and May Mobility signed an agreement to expand their autonomous car solutions with purchase of 1,000 lidar sensors. The binding agreement was for the distribution of autonomous cars with Ouster OS1 and Alpha PrimeTM VLS-128 sensors by 2024.
• On May 2023, the autonomous taxi service offered by Waymo will be expanded in San Francisco and the greater Phoenix area. In the Phoenix area, Waymo is launching its service in Scottsdale and extending its reach to Tempe, Chandler, and Mesa. Around 10,000 people are on the Waymo waiting list to use the service in San Francisco. The emphasis changes as the business grows from collecting more miles driven to providing better services. Users have been using Waymo's taxis for late-night travels when they might otherwise be concerned about safety, relishing the seclusion that the self-driving service gives.
• In August 2023, Pony.ai, a U.S.-based software company, partnered with Toyota Motor (China) Investment Co., Ltd. and GAC Toyota Motor Co., Ltd. to create a joint venture aimed at advancing fully driverless robotaxis for mass production and deployment. This initiative combines Pony.ai's autonomous driving tech, Toyota's branded electric vehicles, and GTMC's production expertise. Together, they'll offer safe and convenient robotaxi services, propelling the industry towards commercialized autonomous mobility.
• In July 2023, Volkswagen, a German-based Automobile manufacturer, plans to initiate trials of self-driving vehicles in Austin, Texas, shifting away from Argo AI. The German auto manufacturer intends to introduce roughly 10 ID Buzz electric vans, equipped with autonomous systems developed alongside Mobileye, into the city by the end of 2023.
• On January 2023, Microsoft will invest $10 million in autonomous vehicle company, Gatik. With the investment, Gatik's valuation would increase to almost $700 million, and the company would commit to creating autonomous delivery truck technology using Microsoft's Azure cloud and edge platform. The push towards autonomous vehicles has been tempered by the difficulties, costs, and safety concerns associated with R&D. By 2030, there will be 4x as many L4 autonomous vehicles worldwide as there were in the previous year, according to Gartner experts. Microsoft plans to market its Azure cloud, AI, edge platform, and Internet of Things services to businesses in the sector.
Considered in this report
• Historic year: 2018
• Base year: 2023
• Estimated year: 2024
• Forecast year: 2029
Aspects covered in this report
• Autonomous Vehicle market Research Report with its value and forecast along with its segments
• Various drivers and challenges
• On-going trends and developments
• Top profiled companies
• Strategic recommendation
By Vehicle Type
• Passenger Car
• Commercial Vehicle
By Type
• Semi-autonomous
• Fully Autonomous
By Application
• Transportation
• Defense
By Level of Automation
• Level 1
• Level 2
• Level 3
• Level 4
• Level 5
By Component
• Hardware
• Software
• Services
The approach of the report:
This report consists of a combined approach of primary and secondary research. Initially, secondary research was used to get an understanding of the market and list the companies that are present in it. The secondary research consists of third-party sources such as press releases, annual reports of companies, and government-generated reports and databases. After gathering the data from secondary sources, primary research was conducted by conducting telephone interviews with the leading players about how the market is functioning and then conducting trade calls with dealers and distributors of the market. Post this; we have started making primary calls to consumers by equally segmenting them in regional aspects, tier aspects, age group, and gender. Once we have primary data with us, we can start verifying the details obtained from secondary sources.
Intended audience
This report can be useful to industry consultants, manufacturers, suppliers, associations, and organizations related to the Autonomous Vehicle industry, government bodies, and other stakeholders to align their market-centric strategies. In addition to marketing and presentations, it will also increase competitive knowledge about the industry.
***Please Note: It will take 48 hours (2 Business days) for delivery of the report upon order confirmation.
![グローバル市場調査レポート販売サイトを運営しているマーケットリサーチセンター株式会社です。](https://www.marketresearch.co.jp/wp-content/uploads/banner-img/40_mrc.jpg)